

Pitch based ACF	BET	Elemental analysis (wt %)				
	(m ² /g)	С	Н	N	0	N/C
OG5A	563	92.4	0.6	0.7	6.0	0.007
OG7A	901	93.0	0.6	0.8	5.4	0.007
OG10A	1085	95.3	0.6	0.5	3.4	0.004
OG15A	1606	95.2	0.6	0.3	3.4	0.003
OG20A	1924	94.1	0.6	0.4	4.8	0.003
PAN based ACF	BET (m²/g)	Elemental analysis (wt %)				N/C
		С	Н	N	0	N/C
FE100	450	70.9	2.0	8.4	17.3	0.102
FE200	650	72.5	1.8	4.8	17.9	0.057
FE300	880	74.3	1.6	3.3	17.2	0.038
FE400	1020	76.8	1.6	2.3	19.4	0.026

Pitch based ACF	BET (m ² / g)	Elemental analysis (wt %)				
		С	Н	N	0	N/C
OG5A	563	92.4	0.6	0.7	6.0	0.007
OG7A	901	93.0	0.6	0.8	5.4	0.007
OG10A	1085	95.3	0.6	0.5	3.4	0.004
OG15A	1606	95.2	0.6	0.3	3.4	0.003
OG20A	1924	94.1	0.6	0.4	4.8	0.003
PAN based ACF	BET (m ² /g)	Elemental analysis (wt %)				N/C
		С	H	N	0	
FE100	450	70.9	2.0	8.4	17.3	0.102
FE200	650	72.5	1.8	4.8	17.9	0.057
FE300	880	74.3	1.6	3.3	17.2	0.038
FE400	1020	76.8	1.6	2.3	19.4	0.026

Sample	Internal Standard	Pyridinic N ^a	Internal Standard /Pyridinic N	
FE100	279	134		
FE200	276	108	0.39	
FE300	332	70	0.21	
FE400	330	64	0.19	

Conclusion

- Carbon is a key material for energy and environmental devices
- Full understanding of carbon structure is necessary for useful applications
- Korea has a lot of sources for carbon materials.
- No manpower and skill for carbon manufacturing.

University:

- Changing the consciousness
- Creation and leading of projects
- * Manpower cultivation

KYUSHU UNIVERSITY

73